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Background

shape completion     subtraction

Defective skull        Cranial implant    

Defective skull Completed skull Cranial 

implant

Learning-based 3D shape completion/inpainting

problem formulation MICCAI Challenges
• AutoImplant I (MICCAI, 2020, virtual)
• AutoImplant II (MICCAI, 2021, virtual)

Workload:

• write a challenge proposal (peer-reviewed, rebuttal, 

revision, accept)

• set up challenge websites1

• prepare the datasets

• dissemination (call for participation, call for papers)

• process the submissions (calculate scores, ranking, 

paper review)

• set up challenge programs (organize presentation)

• post-challenge proceedings (Springer LNCS)

1 https://autoimplant2021.grand-challenge.org/ ,  

   https://autoimplant.grand-challenge.org/ 

(Automatic) cranial implant design
using a patient-specific cranial implant (yellow) to repair a defective skull (gray)

https://autoimplant2021.grand-challenge.org/
https://autoimplant.grand-challenge.org/


Background: AutoImplant I,II differences

1. the datasets
AutoImplant I used synthetic defects (100 for training, 110 for evaluation)

2.  evaluation and ranking
AutoImplant I used common quantitative 

metrics: DSC, HD

AutoImplant II used customized metrics: DSC, 

hd95, border DSC, quantified criteria from 

neurosurgeons → ranking reflects the 

submissions’ actual clinical usability

AutoImplant II provided both clinical defects and (more complex) synthetic defects   

clinical  (11, Task 2) synthetic (114x5=570 for training,

20x5=100 for evaluation, Task 1)



Background: Network Architectures

architectural variations (Encoder-Decoder 2D/3D):

nnU-Net. Isensee et al. (2021). 

nature methods

AutoImplant I 
o ED+Squeeze-and-Excitation block (cvpr 2018)

o U-Net 

o ED+ Residual blocks  (ResNet, cvpr 2016)

o U-Net + Residual blocks (1st place submission)

o V-Net

o Residual Dense U-Net (DenseNet, cvpr 2017)

o Mesh-based statistical shape model

(SSM, non learning-based method)

AutoImplant II 
o ED

o U-Net

o U-Net+ Residual block (1st place submission)

o LSTM (2D)

o PCA (non learning-based method)

‘‘Details in method configuration have more impact on 

performance than do architectural variations’’ 

observations from AutoImplant I and II.

Pre-processing/ data augmentation/ method 

configurations contribute the most to the ranking 

variations of the submissions

preprocessing
o background cropping

o skull registration & alignment

o skull cropping 

data augmentation 
o dataset linking

o augment the defects

o augment the skulls & defect via shape warping

method configuration
o coarse-to-fine framework

o shape prior 

o regularization during training

Input: defective skull. Output: complete skull or implant



Background: Network Architectures

Non-trivial technical challenges:

o Clinical feasibility  

• transfer models trained on synthetic data to clinical data

• traditional quantitative metrics are not closely correlated to the 
submissions’ actual usability

• subjective quality measures are not standardized and quantified.

o High memory footprint 

• skull images are large (512*512*Z)

• desktop GPU memory is limited

• training is slow

o Generalization/Domain shift 

• generalize to various defect shapes

• generalize to various skull shapes

• generalize to clinical cases

observations from AutoImplant I and II.

Pre-processing/ data augmentation/ method 

configurations contribute the most to the ranking 

variations of the submissions

preprocessing
o background cropping

o skull registration & alignment

o skull cropping 

data augmentation 
o dataset linking

o augment the defects

o augment the skulls & defect via shape warping

method configuration
o coarse-to-fine framework

o shape prior 

o regularization during training



Generalization/Domain shift

AutoImplant I: 5 out of 11 submissions failed on the 10 out-of-distribution cases.

AutoImplant II: only 3 teams attempted Task 2 (11 clinical cases).

solutions
• data augmentation & dataset linking

• preprocessing: skull registration & alignment

• using shape priors or regularization during training

Those failed on the out-of-distribution cases did not use any of the methods above!

problems
• There are 10 test cases with varied defect distributions (B-K) compared to the training defects (A)

• A network tends to overfit to the training defects and cannot generalize well to the 10 extra defects in the test set

• The clinical defects tend to be much more irregular and complex and therefore more difficult to complete   



Generalization /Domain shift: data augmentation & dataset linking 

[1] Kodym, O., Španěl, M. and Herout, A., 2020, October. Cranial defect reconstruction using cascaded CNN with alignment. In Cranial Implant Design Challenge (pp. 56-64). Springer, Cham.

data augmentation:

• to increase the varieties of the training samples to prevent overfitting (Kodym, O et al [1])

[2] Matzkin, F et al: create defects that are similar to 

the out-of-distribution test defects, for training   

Results on the test set [1]: no major decline on 

the 10 out-of-distribution test samples 

Results (DSC) on a validation set [1]

[1] Kodym, O et al:

created 5 random 

defects for each 

complete skull in the 

training set

Participants have access to all test samples.

We did not use a hidden test set.

• to create training samples with similar distributions to the test samples (Matzkin, F et al [2]) 

[2] Matzkin, F., Newcombe, V., et al., 2020, October. Cranial implant design via virtual craniectomy with shape priors. In Cranial Implant Design Challenge (pp. 37-46). Springer, Cham. 
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Generalization /Domain shift: data augmentation & dataset linking 
• intensive augmentation: to warp each training sample to the space of the rest samples (Ellis, D.G. et al[1])

[1] Ellis, D.G. and Aizenberg, M.R., 2020, October. Deep learning using augmentation via registration: 1st place solution to the AutoImplant 2020 challenge. In Cranial Implant Design 

Challenge (pp. 47-55). Springer, Cham.

• Ellis, D.G. et al [1]: 100 training samples 

augmented to 99*100+100=10000 samples 

(pair-wise registration & warping)

• Ranked 1st place in AutoImplant I 

• Wodzinski, M et al [2]:AutoImplant II

• ‘ all vs all ’ registration & warping as in [1] 

(different registration methods)

• Combine the dataset of Task 1 and 3

• Train a single model for all the 3 tasks

• Merge datasets by cropping, resampling, 

padding

• Train only on synthetic samples but work 

reasonably well on clinical test cases (Task2)

• Ranked 1st place in AutoImplant II (all 3 tasks)

cropping & 

resampling & 

padding

• dataset linking: to combine datasets of different sources/distributions for training  (Wodzinski, M et al [2]) 

[2] Wodzinski, M., Daniol, M. and Hemmerling, D., 2021, October. Improving the Automatic Cranial Implant Design in Cranioplasty by Linking Different Datasets. In Cranial Implant Design 

Challenge (pp. 29-44). Springer, Cham.
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skull registration & alignment
• to make the training and test samples uniform (same orientation, position, etc)

• formally speaking, to reduce the difference between the distributions of the training and test sets 

[1]. Kodym, O., Španěl, M. and Herout, A., 2020, October. Cranial defect reconstruction using cascaded CNN with alignment. In Cranial Implant Design Challenge (pp. 56-64). Springer, Cham.

method [2]:

• register the training and test samples to a common 

(pre-selected) reference skull atlas

• the training and test samples have the same size, 

orientation, etc, and minimum differences

• the atlas is created by averaging several complete 

skull (a mean skull shape)

method [1]:

• manually place four landmarks on each skull in the training set

• align the skulls along the four landmarks using a similarity transformation 

(scale, rotation, translation), and discard the (facial) bones below the 

alignment plane

• align the test samples the same way as training samples  

results on a validation set [1]

Method [1,2]: both used 3D registration & an inverse transform is needed to convert the results back to the original space

Generalization /Domain shift:  skull registration & alignment 

[2]. Matzkin, F., Newcombe, V., et al., 2020, October. Cranial implant design via virtual craniectomy with shape priors. In Cranial Implant Design Challenge (pp. 37-46). Springer, Cham. 
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A3:  defect augmentation, skull 

alignment

A3 (s): defect augmentation, skull 

alignment, shape prior

Generalization /Domain shift: shape prior & regularization

[1]. Matzkin, F., Newcombe, V., et al., 2020, October. Cranial implant design via virtual craniectomy with shape priors. In Cranial Implant Design Challenge (pp. 37-46). Springer, Cham. 

regularization(Wang, B. et al [2]) shape prior(Matzkin, F et al [1]) 

skull atlas used as an additional 

input channel

A3

A3 (s) 

[2].  Wang, B., Liu, Zet al., 2020, October. Cranial implant design using a deep learning method with anatomical regularization. In Cranial Implant Design Challenge (pp. 85-93). Springer, Cham.

A8:  unsuccessful (no 

augmentation, no 

preprocessing)

A8 (re):  unsuccessful but 

better, quantitatively and 

qualitatively

explicit shape prior

implicit shape prior
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Generalization /Domain shift: statistical shape model

[1]. Pimentel, P., Szengel, A., Ehlke, M., Lamecker, H., Zachow, S., Estacio, L., Doenitz, C. and Ramm, H., 2020, October. Automated virtual reconstruction of large 

skull defects using statistical shape models and generative adversarial networks. In Cranial Implant Design Challenge (pp. 16-27). Springer, Cham.

mesh-based SSM of the complete skulls [1]

mean shape

shape variations post-processing

image-to-mesh -> mesh-to-image -> subtraction & post-processing (implant) 

results: defect variations barely affect SSM’s performance (Pimentel, P. [1])

Unlike deep learning approaches that require complete-defect or complete-implant pairs for training,

only complete skulls are needed to build a statistical shape model, so that it is not affected by the variations of the 

defects in the training and test sets 
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[1]. Li, J, Ellis, David G, et al. 2022, April, Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model. arXiv:2204.05703

[2]. Li, J., Krall, M., et al., 2021. MUG500+: Database of 500 high-resolution healthy human skulls and 29 craniotomy skulls and implants. Data in Brief, 39, p.107524.

Generalization /Domain shift: statistical shape model 
1. different methods for building and fitting an SSM

2. work directly on images instead of meshes: no image-mesh-image conversion needed

3. evaluated on both synthetic and clinical data (AutoImplant II & MUG500+(Li, J. et al 2021 [2]))

reference skull x_0

x’_i

new shape

training 

samples x_i

a test 

sample y_j

y’_j

mean shape

PCA

shape variations

workflow (Li, J. et al 2022 [1]) X_i

• the implant is easily separable from the subtraction result –

cranium registration is accurate.

• noise occurs mainly in the facial area – subtle facial structures 

are not (or cannot be) registered properly   

• using a mean shape or a single shape makes little difference on 

cranium reconstruction. A mean shape mainly adds to the 

complexity of the facial bones.



Generalization /Domain shift: statistical shape model

manual post-processing results on mug500+ dataset (29 cases in total)

sub1                  sub2                    sub3                  ours

results on Task2@AutoImplant II dataset (11 cases in total)

neurosurgeons’ evaluation Task2@AutoImplant II dataset
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Generalization /Domain shift: statistical shape model 

Is deep learning too much for a ‘simple’ task as automatic cranial implant design?

Yes, since:

• a simple SSM produces better results on clinical cases than all previous deep learning approaches 

• the reconstruction process of an SSM is transparent and interpretable (mean shape + shape variations)

• a SSM does not need clinical cases for training but still generalizes well to clinical cases in evaluation

And no, since:

• The reason why a CNN performs poorly on real cases is due to a lack of large quantities of annotated clinical cases

• the batch-wise training scheme enables deep learning to train on arbitrarily large datasets, while the number of images used to 

build an SSM is limited (the covariance matrix, matrix inverse etc is computationally intensive).

• state of the art deep learning approaches still far out-perform SSM on synthetic defects, by training on large quantities of 

synthetic data.

• the cranium is structurally simple so that registration accuracy is high. SSM might not perform as well on more complex 

structures such as the facial bones. (the registration step determines largely the quality of point correspondence, and hence

the final results)

Li, J, Ellis, David G, et al. 2022, April, Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model. arXiv:2204.05703



High memory footprint/slow training

Input image is of high resolution (512*512*Z)

• High memory footprint:  GPU memory is limited 

• Slow training (FLOPs): e.g., training takes seven days on two V100 GPUs for Ellis, D.G. et al (AutoImplant I, 1st place)

Qualitative comparison of the implants produced by different methods (AutoImplant I)

• Obviously the quality of the implants varies

• Most methods downsample or resample the images to a smaller size, at the cost 

of loss of image quality (coarse input -> coarse output).

• The degree of down-sampling is negatively correlated with the implant quality: 

A8(re), A10 (r), 128*128*64.  A9(r) 256*256*54

• To ease the negative effects of down/sampling, one can crop the image before 

down/sampling: crop the background and/or the facial area

• Other popular and effective approaches: coarse-to-fine, sparse CNN



High memory footprint/slow training: coarse-to-fine prediction 

[1]. Li, J., Pepe, A., Gsaxner, C., Campe, G.V. and Egger, J., 2020. A baseline approach for AutoImplant: the MICCAI 2020 cranial implant design challenge. In Multimodal 

Learning for Clinical Decision Support and Clinical Image-Based Procedures (pp. 75-84). Springer, Cham.

Two-step (Li, J .et al. [1])

• Step 1: use a CNN (N_1) to predict a coarse implant

• Step 2: use another CNN (N_2) to predict the fine implant based on a bounding box defined by the implant from Step 1   

N_1 output                                 N_2 output                         ground truth 
DSC

Additional remark: a CNN does not need to ‘see’ the entire skull to make reasonable predictions to the missing shape



High memory footprint/slow training: coarse-to-fine prediction 

Single-step, end-to-end (Bayat, A et al [1])

• 3D shape completion at low resolution + 2D super-resolution

• 3D and 2D loss are combined to enable an end-to-end training

[1] Bayat, A., Shit, S., Kilian, A., Liechtenstein, J.T., Kirschke, J.S. and Menze, B.H., 2020, October. Cranial implant prediction using low-resolution 3D shape completion and 

high-resolution 2D refinement. In Cranial Implant Design Challenge (pp. 77-84). Springer, Cham.



High memory footprint/slow training: Sparse CNN

[1] Li, J., Gsaxner, C., Pepe, A., Schmalstieg, D., Kleesiek, J. and Egger, J., 2022. Sparse Convolutional Neural Networks for Medical Image Analysis.

[2] Choy, C., Gwak, J. and Savarese, S., 2019. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (pp. 3075-3084).

Sparse CNN for Medical Image Analysis (Li, J .et al. [1])

• The skull voxels (‘1’) are sparsely distributed in the binary (‘0’ background, ‘1’ skull) image

• Skull images can be seen as ‘sparse tensors’, where most voxels are ‘0’

• Traditional convolutions are inefficient in processing sparse tensors (a)

• Minkowski Engine (Choy C. et al [2]) is designed specifically for sparse tensors (b)

• Traditional convolution: consumes both ‘1s’ and ‘0s’

• Sparse CNN: consumes only the ‘1s’ -> low memory 

usage & low FLOPs

input

pred

gt

Sparse CNN results:

• can take as input the original image (512*512*Z)

• can output the implants directly at 512*512*Z

• use about 11GB memory for training and 3GB for 

evaluation

• Fast: takes around 3 hours to train at full image 

resolution (512*512*Z) 



High memory footprint/slow training: Sparse CNN

128^3

512^2xZ

512^2xZ

Table S1.Voxel occupancy rate (VOR) and 

the memory usage (in GB) during training 

and inference for different organs.

Sparse CNN can be used for the refinement of the segmentation masks   (Li, J .et al. [1])

• Image resolution: 512*512*Z

• Voxel occupancy rate of the organs is very low (see the table below)

• Workflow: dense CNN coarse segmentation (128^3) -> sparse CNN refinement   (coarse-to-fine)

[1] Li, J., Gsaxner, C., Pepe, A., Schmalstieg, D., Kleesiek, J. and Egger, J., 2022. Sparse Convolutional Neural Networks for Medical Image Analysis.



High memory footprint/slow training: patch-wise training

[1] Li, J., von Campe, G., Pepe, A., Gsaxner, C., Wang, E., Chen, X., Zefferer, U., Tödtling, M., Krall, M., Deutschmann, H. and Schäfer, U., 2021. Automatic skull defect 

restoration and cranial implant generation for cranioplasty. Medical Image Analysis, 73, p.102171.

Patch-wise training and inference (Li, J .et al. [1])

• use image patches to avoid down-sampling

• tailored training strategies to maintain generalizability while training on patches 



To summarize: 

Major technical challenges/solutions in automatic cranial implant design:

• Domain shift: data augmentation, skull registration & alignment, shape prior, regularization, statistical shape model

• High memory footprint & slow training: coarse-to-fine, patch-wise training and inference, sparse cnn

High-level Insights:

• Architectural variations do not make a big difference in performance and ranking.

• Top ranking submissions usually use a combination of the above mentioned methods.

• Data augmentation has the most influence on the generalizability and performance (Winners of both challenges used 

intensive data augmentation).



[1] Kodym, O., et al., 2021. Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data. Computers in Biology and Medicine, 137, p.104766.

• traditional quantitative metrics (DSC, HD, HD95 etc) are not closely correlated with the usability of an implant

Clinical Feasibility 

Kodym, O[1]:

• correlation between quantitative scores and 

experts‘ evaluation is positive but weak.

• discrepancies:  there are predictions with 

high dice scores but low usability and vice 

versa.

Issue 1:  Quantitative evaluation of submissions’ clinical feasibility 



Clinical Feasibility 

Issue 1:  Quantitative evaluation of submissions’ clinical feasibility 

Solutions:

• customized quantitative metrics: border DSC (affected less by the overall thickness of the implants)

• quantification of experts‘ qualitative evaluation (Ellis, D G et al [1])

[1] Ellis, D.G et al., 2021, October. Qualitative Criteria for Feasible Cranial Implant Designs. In Cranial Implant Design Challenge (pp. 8-18). Springer, Cham.

• border DSC measures the similarity only around 

the borders

• Border DSC has stronger correlation with 

experts‘ evaluation than traditional metrics 

(DSC, HD95) 

the quantified scores reflect an expert‘s view on the 

submissions‘ feasibility

• compare different methods

• ranking



[1] Li, J, Ellis, David G, et al. 2022, April, Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model. arXiv:2204.05703

Clinical Feasibility 

Issue 1:  Quantitative evaluation of submissions’ clinical feasibility 

evaluation of the results from Li, J et al [1] based on common quantitative metrics (DSC, HD95 Table III) and 

quantified qualitative metrics (Table IV)  

• ranked differently by different evaluation methods

• the quantitative scores (in Table III) alone cannot be used to judge the feasibility of an implant

Table IV
Table III



[1] Kodym, O., et al., 2021. Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data. Computers in Biology and Medicine, 137, p.104766.

Clinical Feasibility Evaluation

Issue 2: the synthetic defects used for training is defined differently from the clinical defects 

Kodym, O. et al [1]: (a) synthetic defetcs (b) real defect + experts designed implant 

synthetic samples: the ground truth is 

simply the removed part. The implant fits 

the defect seamlessly in terms of borders 

and thickness 

clinical samples: the ground truth is the implants manually 

designed by experts. the implant is thinner than the skull 

bones and implant does not necessarily fits the defect

• AutoImplant I, II: all methods are trained on synthetic samples for a perfect fit, whether or not evaluated on 

clinical samples

The results from the automatic methods are not directly usable:
• use the clinical cases for training directly: not enough training samples

• (manually) edit the automatic results to meet the clinical requirements



Clinical Feasibility Evaluation

Issue 2: the synthetic defects used for training is defined differently from the clinical defects 

Solutions:

• (manually) edit the automatic results to meet the clinical requirements

rescale the coordinates of the inner implant 

surface to adjust the thickness and borders 



Conclusions

Organizational efforts:

o Thanks to the challenge, there have been an increased interest in automatic cranial 

implant design in the community.

o Get to know / collaborate with other groups around the world working on the same 

problem.

o The submissions from different groups lay solid foundations for future studies on this or 

similar topics.

Technical contributions:

o The generalization/domain shift problem in 3D shape completion/inpainting.

o The sparse problem: how to efficiently process high-resolution but sparse data & Under a 

memory constrained environment, how to obtain high-resolution output.

o Limitations of common metrics in cranial implant design: how to quantify experts’ 

qualitative assessment.

o The methods presented at the challenge is generalizable and applicable to other problems.



Thank You

Questions?
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